Course No: CVL 2310 Course Title: Concrete Technology Date: / /2018 No. of Questions: (4) Time: 1hours Using Calculator

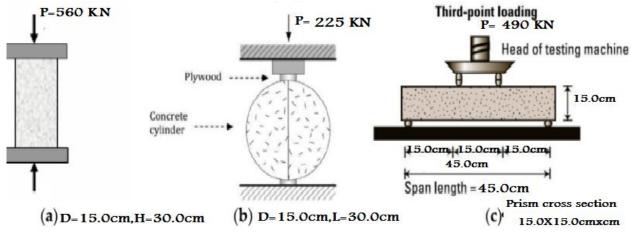
Total Grade:

Instructor Name: Dr.Ayed Zuhud Student No.: ______ Student Name: ______ College Name: ______ Dep. / Specialist: _____ Using Dictionary-No –Closed book

Question One: Mark the following phrases true or fouls between brackets 1) Mortar+ aggregate \rightarrow concrete) 2) The initial set starts when the needle tip at 5.5 mm from the bottom 3) The kiln temperature is about 700 $^{\circ}$ C) 4) To find the change of cement volume soundness test is needed 5) Segregation is defined as the collection of components of a fresh concrete mixture) 6) Type four of cement contains quantity of Alite more than Belite) 7) Aggregate retained on sieve 9.5 mm are coarse aggregate) 8) Compaction test used to define workability) 9) Flow test is property of hardened concrete) 10) Zero slump is the indication of very low water-cement ratio) Question Two:

1-Using neat drawing, show the types of of concrete slump results

2-Show using neat and precise curves the effect of age on *compressive strength for different w/c ratios*


3-Using neat curves ,show the effect of *temperature on compressive strength* of concrete

4-Show the influence of the *water/cement ratio and moist curing on concrete strength*(different ages of concrete

5-*The size of aggregate influences the compressive strength* of concrete Show this sentence using appropriate curves.

Question Three:

Cylindrical specimens and prism of hardened concrete were tested to find its compressive strength , tensile strength and flexural strength respectively the average load failure of specimens are shown in the figure .a)Compute the specified strength for each test in Mpa ,b)What is the relationship between compressive strength with tensile and flexural strength respectively.

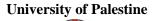
Course No: CVL 2310 Course Title: Concrete Technology Date: / /2018 No. of Questions: (4) Time: 1hours Using Calculator

Instructor Name: Dr.Ayed Zuhud Student No.: ______ Student Name: ______ College Name: ______ Dep. / Specialist: _____ Using Dictionary-No –Closed book

Question Four:

Quality engineer is working in ready mix concrete factory at Gaza Strip) .He was intended to prepare a mix of *Non air entrained concrete of 30Mpa* cylindrical compressive strength with a slump of **75 mm**. The data that was given for him are as following :

a)The C.A and F.A was oven dried ,b)The specific gravity of C.A and F.A were**2.65** and **2.7** respectively ,c)The dried oven of C.A was **1680 Kg/cm³**,d)The fine modulus of F.A was **3.0** ,e)The absorption water capacity of C.A and F.A were **2.8 and 2.0 %** respectively ,f)The max size of aggregate was **25 mm**


If it is required 3% of results to be lower than the chrahsterestic strength and the standard deviation was 3 Mpa

1-Find the quantities of all materials required for the previous state listed If the C.A was exposed to rain so the free moisture content was 1.5%
2-Find the quantities of all materials required (Suppose any missing data)

End of Questions Good luck

Percentage of results allowed to fall below the minimum		Value K		
0.1			3.09	
0.6			2.50	
1.0			2.33	
2.5			1.96	
6.6			1.50	
16.00			1.00	
28-Day Compressive	Water-cement ratio by weight			
Strength in MPa (psi)	Non-Air- Entrained	En	Air- trained	
41.4 (6000)	0.41		-	
34.5 (5000)	0.48		0.40	
34.5 (5000) 27.6 (4000)	0.48 0.57		0.40 0.48	

Course No: CVL 2310 **Course Title: Concrete Technology** Date: / /2018 No. of Questions: (4) **Time: 1hours Using Calculator**

Final Exam Second Semester 2017/2018 **Total Grade:**

Instructor Name: Dr.Ayed Zuhud Student No.: ____ Student Name: _____ College Name: ____ Dep. / Specialist: _ Using Dictionary-No -Closed book

		Mixing Wa	ter Quantity in	kg/m ³ (lb/yd ³)	for the listed Non	ninal Maximum	Aggregate Size		
Slump	9.5 mm (0.375 in.)	12.5 mm (0.5 in.)	19 mm (0.75 in.)	25 mm (1 in.)	37.5 mm (1.5 in.)	50 mm (2 in.)	75 mm (3 in.)	100 mm (4 in.)	
Non-Air-Entrained									
25 - 50 (1 - 2)	207 (350)	199 (335)	190 (315)	179 (300)	166 (275)	154 (260)	130 (220)	113 (190)	
75 - 100	228	216	205	193	181	169	145	124	
(3 - 4) 150 - 175	(385) 243	(365) 228	(340) 216	(325)	(300)	(285) 178	(245) 160	(210)	-
(6 - 7)	(410)	(385)	(360)	(340)	(315)	(300)	(270)	-	
Typical entrapped air (percentage)	3	2.5	2	1.5	1	0.5	0.3	0.2	
Air-Entrained									
25 - 50 (1 - 2)	181 (305)	175 (295)	168 (280)	160 (270)	148 (250)	142 (240)	122 (205)	107 (180)	
75 - 100 (3 - 4)	202 (340)	193 (325)	184 (305)	175 (295)	165 (275)	157 (265)	133 (225)	119 (200)	
150 - 175 (6 - 7)	216 (365)	205 (345)	197 (325)	184 (310)	174 (290)	166 (280)	154 (260)	-	
	()	. ,	mmended A	. ,	(percent)	. ,			
Mild Exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	1
Moderate Exposure	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0	
Severe Exposure	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0]
Nominal Ma	aximum	L		Fine A	Aggrega	te Fin	eness I	Modulus	
Aggregate Size		2.40 2.60		2.80		3.0	00		
.5 mm (0.375 inches)		0.50		0.48	0.46		0.4	0.44	
2.5 mm (0.5 inches)		0.59		0.57	6	0.55		0.53	
9 mm (0.75 inches)		0.66		0.64	0	0.62		0.60	
25 mm (1 inches)	5 mm (1 inches)		0.7	1	0.69	0	0.67	0.6	55
7.5 mm (1.5 inches)		0.7	5	0.73	0	0.71	0.6	59	
50 mm (2 inches)		0.7	8	0.76	0	0.74	0.7	72
75 mm (3 inches)	5 mm (3 inches)		0.8	2	0.80	0	0.78	0.7	76
150 mm (6 inches	5)		0.8	7	0.85	0	0.83	0.8	31

Notes: These values can be increased by up to about 10 percentge for pavement applications.

Maximum size of aggregate (mm)	First estimate concrete weight (kg/m ⁵)				
	Non-air-entrained concrete	Air-entrained concrete			
9.5	2280	2200			
12.5	2310	2230			
19	2345	2275			
25	2380	2290			
37.5	2410	2350			
50	2445	2345			
75	2490	2405			
150	2530	2435			