Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) University of Palestine

Final Exam 2014/2015 Total Grade: 50

Instructor Name : Dr. Osama D	awoud
Student No.:	
Student Name:	
College Name:	
Dep. / Specialist:	
Using Dictionary (No)	

COPY your answers for Question 1 to the following table:

Question	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) University of Palestine

Final Exam 2014/2015 Total Grade: 50

Instructor Name: Dr. Osa	ma Dawoud
Student No.:	
Student Name:	
College Name:	
Dep. / Specialist:	
Using Dictionary (No)	

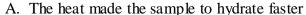
Question One: Choose the correct answer

30

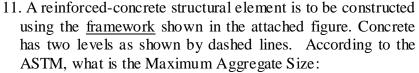
- 1. Which of the following can be used as the main source for the **calcium oxide** (**CaO**) during the manufacturing of the Ordinary Portland Cement?
 - A. Clay
 - B. Limestone
 - C. Hematite
 - D. All of the above
- 2. Gypsum is added to the Portland Cement during manufacturing in order to:
 - A. Prevent flash-setting
 - B. Facilitate the early strength of concrete
 - C. Reduce water content
 - D. None of the above
- 3. Which of the following can be blamed for the false setting?
 - A. High C₂S content
 - B. Storing cement in a humid place before being used
 - C. Formation of ettringite in large quantities during hydration
 - D. The low w/c ratio
- 4. Which of the following can be employed to reduce bleeding of fresh concrete:
 - A. Using more fine aggregates
 - B. Using well graded aggregates
 - C. Increasing the entrained air
 - D. Reducing water content
 - E. All of the above
 - F. None of the above
- 5. Chemically-combined water in the cement paste:
 - A. Is released only when the components of cement paste are thermally decomposed
 - B. Present in the paste adsorbed to the gel surface
 - C. Represents 23% of the total water added to the dry cement
 - D. None of the above
- 6. Increasing the fineness of the cement:
 - A. Increases workability of concrete
 - B. Increases water demand of the cement paste
 - C. Induces faster hydration rates
 - D. All of the above
 - E. None of the above

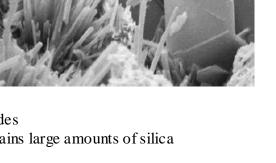
Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) University of Palestine

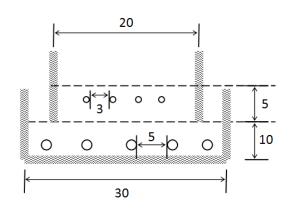


Final Exam 2014/2015 Total Grade: 50


Instructor Name: Dr. O	sama Dawoud
Student No.:	
Student Name:	
College Name:	
Dep. / Specialist:	
Using Dictionary (No)	


7. Which of the following **increases workability** of fresh concrete:

- A. Decreasing the w/c ratio
- B. Using rounded aggregate rather than the crushed ones
- C. Using set-accelerating admixtures
- D. Using cement of low fineness
- 8. Which of the following can be said about C_3A :
 - A. It increases cement paste resistance to sulfate attack
 - B. Its hydration releases high energy compared to other components of cement
 - C. It reacts with water and produces C-S-H gel.
 - D. All of the above
- 9. The attached figure represents SEM of an Ordinary Portland Cement Paste. **The plate-shaped crystals** are:
 - A. Tricalcium alluminate
 - B. Calcium carbonate
 - C. Calcium hydroxide
 - D. C-S-H gel
- 10. If a sample of hardened mortar was heated-up in a container until large amounts of CO₂ gas were released, this means that:

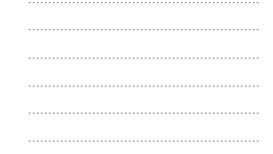


- B. Only the capillary water evaporated from the sample
- C. The gel started to decompose into its composing oxides
- D. The sand which was used to prepare the sample contains large amounts of silica

A.	52 mm
В.	40 mm
C.	33 mm
D.	22.5 mm
E.	17 mm
F.	10 mm

 •	
 •	
 •	

Course Title: Concrete Technology


Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) University of Palestine

Final Exam 2014/2015 Total Grade: 50 Instructor Name: Dr. Osama Dawoud
Student No.: _____
Student Name: ____
College Name: ____
Dep. / Specialist: ____
Using Dictionary (No)


12. A cement paste was tested for the initial setting time using
Vicat apparatus. At 20 min, penetration was 37 mm. At 30
min, penetration was 32 mm. Accordingly, initial setting time
is:

- A. 30 min
- B. 34 min
- C. 26 min
- D. 25 min
- E. None of the above

13. The following figure represents the aggregate size distribution of an aggregate sample. According to the figure, the fineness modulus is (Note that standard sieves used for the calculations of FM are shown by the white circles):

A. 3.27 B. 4.73 C. 6.31 D. 3.10 E. 2.40 F. 1.00

14. Which of the following is the correct shape of failure of <u>indirect tensile strength test</u> if a cylindrical specimen was used?

B.

C.

D.

E. None of the above

Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) University of Palestine

Final Exam 2014/2015 Total Grade: 50

Instructor Name	: Dr. Osama Dawoud
Student No.:	
Student Name: _	
College Name:	
Dep. / Specialist:	
Using Dictionary	

15. The transition zone between aggregates and cement paste usually:

- A. Refers to the transition of the cement behavior from the elastic to the plastic one.
- B. Represents the strongest zone in the concrete
- C. Contains a high content of the C-S-H gel
- D. All of the above
- E. None of the above

Question Two: Mix Design

20

A concrete mix is to be designed for use in a 300 mm thick slab with no reinforcement. Design the concrete mix according to the ACI method OR the British Standard Method according to the following:

- Required slump of 75 mm.
- Required Average 28-day UCS 34.5 MPa
- Aggregates are crushed
- Coarse aggregate:
 - o nominal maximum size = (20.0 mm if you use British standard method)
 - o nominal maximum size = (19.0 mm if you use ACI method)
 - \circ dry-rodded weight = 1650 kg/m³.
 - \circ specific gravity = 2.68,
 - o moisture content = 0.1%
 - \circ absorption = 0.5%
- Fine aggregate:
 - \circ fineness modulus = 2.5,
 - o specific gravity = 2.68,
 - o moisture content = 5%,
 - \circ absorption = 0.7%
 - o Percentage passing sieve $600 \mu m = 50\%$.
- No air-entrainment is required
- Maximum allowable water-cement ratio = 0.44
- Minimum cement content = 335 kg
- Density of water = 1000 kg/m^3
- Specific gravity of Portland cement = 3.15

Show y	<u>your choser</u>	<u>n values on the</u>	<u>e attached table</u>	es and figures		
• • • • • • •	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	

Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes)

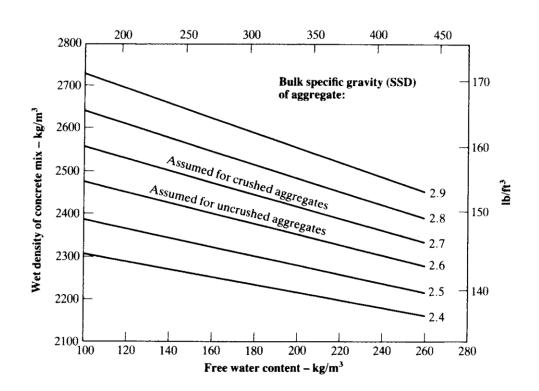
University of Palestine

Final Exam 2014/2015 Total Grade: 50

Instructor Name: Dr. Osam	a Dawoud
Student No.:	
Student Name:	
College Name:	
Dep. / Specialist:	
Using Dictionary (No)	

مع تمنياتنا لكم بالنجاح والتوفيق

Course Title: Concrete Technology

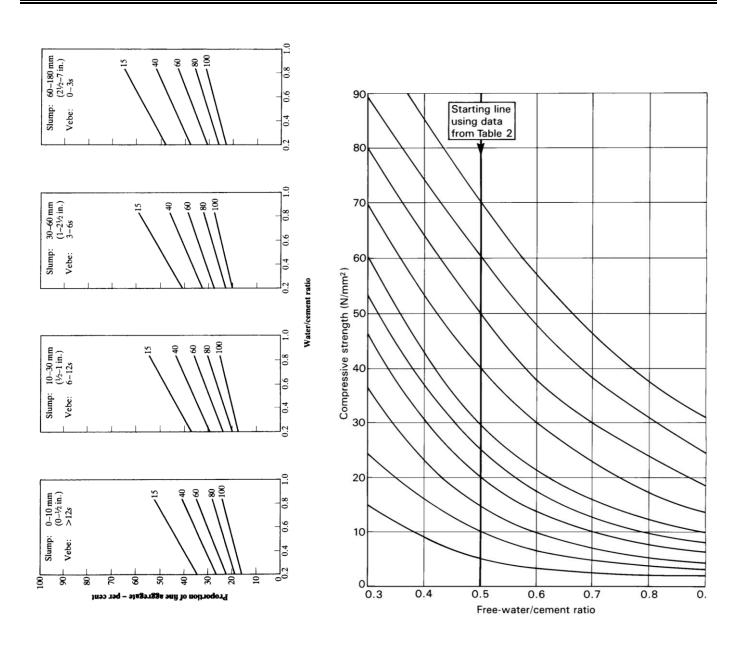

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes)

University of Palestine

Final Exam 2014/2015 Total Grade: 50 Instructor Name: Dr. Osama Dawoud
Student No.: _____
Student Name: _____
College Name: ____
Dep. / Specialist: ____
Using Dictionary (No)

Aggregate Water content			ent kg/m³ (kg/m³ (lb/yd³) for:			
Max. size mm (in.)	Туре	Słump mm (in.)	$0-10$ $(0-\frac{1}{2})$	$ \begin{array}{c} 10 - 30 \\ (\frac{1}{2} - 1) \end{array} $	$30-60 \\ (1-2\frac{1}{2})$	$ \begin{array}{c} 60-180 \\ (2\frac{1}{2}-7) \end{array} $	
		Vebe s	>12	6–12	3-6	0-3	
$\frac{10 \ (\frac{3}{8})}{}$	Uncrushed Crushed		150 (255) 180 (305)	180 (305) 205 (345)	205 (345) 230 (390)		
$20 \ (\frac{3}{4})$	Uncrushed Crushed		135 (230) 170 (285)		180 (305) 210 (355)		
$\frac{1}{40 \ (1\frac{1}{2})}$	Uncrushed Crushed		115 (195) 155 (260)	140 (235) 175 (295)	160 (270) 190 (320)	,	

B.S. Method


Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) University of Palestine

Final Exam 2014/2015 Total Grade: 50 Instructor Name: Dr. Osama Dawoud
Student No.: _____
Student Name: ____
College Name: ____
Dep. / Specialist: _____

Using Dictionary (No)

B.S. Method

Course Title: Concrete Technology

Date: 28/05/2015 No. of Questions: (2) Time: 90 minutes Using Calculator (Yes) **University of Palestine**

Final Exam 2014/2015 Total Grade: 50 Instructor Name: Dr. Osama Dawoud Student No.:
Student Name:
College Name:
Dep. / Specialist:

Using Dictionary (No)

	Mixing Water Quantity in kg/m³ (lb/yd³) for the listed Nominal Maximum Aggregate Size							egate Size
Slump	9.5 mm (0.375 in.)	12.5 mm (0.5 in.)	19 mm (0.75 in.)	25 mm (1 in.)	37.5 mm (1.5 in.)	50 mm (2 in.)	75 mm (3 in.)	100 mm (4 in.)
Non-Air-Entrained								
25 - 50	207	199	190	179	166	154	130	113
(1 - 2)	(350)	(335)	(315)	(300)	(275)	(260)	(220)	(190)
75 - 100	228	216	205	193	181	169	145	124
(3 - 4)	(385)	(365)	(340)	(325)	(300)	(285)	(245)	(210)
150 - 175	243	228	216	202	190	178	160	
(6 - 7)	(410)	(385)	(360)	(340)	(315)	(300)	(270)	-
Typical entrapped air (percentage)	3	2.5	2	1.5	1	0.5	0.3	0.2
Air-Entrained								
25 - 50	181	175	168	160	148	142	122	107
(1 - 2)	(305)	(295)	(280)	(270)	(250)	(240)	(205)	(180)
75 - 100	202	193	184	175	165	157	133	119
(3 - 4)	(340)	(325)	(305)	(295)	(275)	(265)	(225)	(200)
150 - 175	216	205	197	184	174	166	154	
(6 - 7)	(365)	(345)	(325)	(310)	(290)	(280)	(260)	-
		Reco	mmended A	ir Content (percent)			
Mild Exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate Exposure	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0
Severe Exposure	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0

Nominal Maximum	Fine Aggregate Fineness Modulus				
Aggregate Size	2.40	2.60	2.80	3.00	
9.5 mm (0.375 inches)	0.50	0.48	0.46	0.44	
12.5 mm (0.5 inches)	0.59	0.57	0.55	0.53	
19 mm (0.75 inches)	0.66	0.64	0.62	0.60	
25 mm (1 inches)	0.71	0.69	0.67	0.65	
37.5 mm (1.5 inches)	0.75	0.73	0.71	0.69	
50 mm (2 inches)	0.78	0.76	0.74	0.72	
75 mm (3 inches)	0.82	0.80	0.78	0.76	
150 mm (6 inches)	0.87	0.85	20	Day	

ACI Method

28-Day Compressive	Water-cement ratio by weight			
Strength in <u>MPa</u> (psi)	Non-Air- Entrained	Air- Entrained		
41.4 (6000)	0.41	-		
34.5 (5000)	0.48	0.40		
27.6 (4000)	0.57	0.48		
20.7 (3000)	0.68	0.59		
13.8 (2000)	0.82	0.74		