Course Title: General .Chem. Date: 26/11/2018 No. of Questions: (3) Time: 60min Using Calculator (yes) University of Palestine Second mid Exam 2018-2019 Total Grade: 30 Instructor Name: ______ Student No.: ______ Student Name: ______ College Name: : ______ Dep. / Specialist: _____

Question one: Multiple choice question (18 points)	
 1. The below diagram is an illustration of 1.0 0.5 0.0 1.0 2.0 3.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 1.0 1.0<!--</td--><td> 2. Consider the balanced equation: 2CH₄ + 4O₂ → 2CO₂ + 4H₂O If 2.50 mol of each reactant is mixed together, how many moles of CO₂ will be produced? a. 2.50 b. 5.00 c. 1.25 d. 4.00 e. 2.00 </td>	 2. Consider the balanced equation: 2CH₄ + 4O₂ → 2CO₂ + 4H₂O If 2.50 mol of each reactant is mixed together, how many moles of CO₂ will be produced? a. 2.50 b. 5.00 c. 1.25 d. 4.00 e. 2.00
c. Avogadro's Lawd. Dalton's Lawe. Faraday law	
 3. In the reaction, K₂SO₄(aq) + Ba(NO₃)₂(aq) → BaSO₄(s) + 2 KNO₃(aq), which ions are the spectator ions? a. Ba²⁺ and SO₄²⁻ 4 b. Ba²⁺ and K⁺ c. K⁺ and NO₃⁻ d. Ba²⁺ and NO₃⁻ 	 4. 66.7 mL of 18.0 molar sulfuric acid solution was dissolved in enough water to make 500 mL of solution. The molarity of the diluted mixture is a 2.40 molar b 0.135 molar c 36.0 molar d 9.00 molar e 0.00741 molar
 5. Which of these equations does <i>not</i> represent an oxidation-reduction reaction? a. 3Al + 6HCl → 3H₂ + AlCl₃ b. 2H₂O → 2H₂ + O₂ c. 2NaCl + Pb(NO₃)₂→PbCl₂ + 3NaNO₃ d. 2NaI + Br₂ → 2NaBr + I₂ e. Cu(NO₃)₂ + Zn → Zn(NO₃)₂ + Cu 	6. Avogadro low state. a. Vα n b. Vα P. c. P α n d. M α m
7. Which of the following is predicted to be <i>triprotic</i> acid in water?a. HClb. H ₃ PO ₄ c. H ₂ SO ₄ d.CH ₃ COOH	 8. Acetic acid (CH₃COOH), formic acid (HCOOH), hydrofluoric acid (HF), and ammonia (NH₃)are commonly classified as: a. Strong acids. b. Nonelectrolytes. c. Strong electrolytes. d. Weak electrolyte
9. Diethyl ether $(C_2H_5)_2O$ (M = 74)vaporizes at room temperature. If the vapor exerts a pressure of 233 mm Hg in a flask at 25 °C, what is the density of the vapor? a. 0.928 b. 0.328 c. 0.528 d. 0.728	10 A cylinder of compressed gas is labeled(composition mol%) 4.5% H2S, 3.0% CO2, balance N2. The pressure gauge attached to the cylinder reads 46.0atm. The partial pressure of H_2S (in atm). a. 2.07 b. 2.97 c. 4.07 d. 1.0

11. According to the Bronsted definition, a acid is a	12. A gas is collected in the flask shown here. What is the	
compound that a proton and	pressure exerted by the gas if the atmospheric pressure is	
a base is a compound that a proton. An acid-	735 mmHg?	
base reaction involves transfer of	a. 42 mmHg b. 693 mmHg	
a proton from the to the	c. 735 mmHg d. 777 mmHg	
The answers in order are		
a. donates, accepts, base, acid		
b. accepts, donates, base, acid		
c. donates, accepts, acid, base		
d. accepts, donates, acid, base		
13. What is the mixing of gases due to molecular	14. What is the oxidation number of phosphorus in	
motion called	KH ₂ PO ₄ ?	
	a) +3 b) +5	
a. Diffusion b. Effusion c. Fission d. Fusion	c) +7 d) -5 e) +4	
15. The fraction of rate of offusion of iodide atom to	16 What is the evidation number of phosphorus in	
13. The fraction of face of endsion of founde atom to	$KH_{2}DO(2)$	
	$f \rightarrow 2$	
d. 0,355 D. 0,335	(1, +3)	
c. 0,235 d. 0,542	(0) + 3	
	(c) + 7	
	(a) = 3	
17. This group of elements combines with metal	18 Which of the following compounds will not	
elements to form salts.	undergo an acid-base (neutralization)	
a) alkali metals b) alkaline earth metals	reaction with HClO ₂ ?	
c) noble gases d) halogens	a) NaOH b) $Sr(OH)_2$	
	c) NH_2 d) Na_2CO_2	
	$e) H_2 SO_4$	
Question Two: (6 points)		

A. Complete and balance the following ionic equation.

 $Pb(NO_3)_2(aq) + NaI(aq) \rightarrow$

- 1) Complete the ionic equation.
- 2) Balance the chemical reaction
- 3) Write the net ionic equation
- 4) Determine which is spectator ions.

B. Take the following reaction: NH3+O2 \rightarrow NO+H2O. In an experiment, 3.25g of NH3

are allowed to react with 3.50g of O2.

- 1) Which was the limiting reactant?
- 2) How many grams of NO formed?
- 3) How much of the excess reactant remains after the reaction?

Question three: (6points)

A. Aluminium carbonate is used to treat the symptoms of increased stomach acid reflux and stomach ulcers since it neutralize stomach acid (essentially hydrochloric acid). Calculate the volume of carbon dioxide gas produced at 25° C and 755mmHg when a soluble capsule containing 0.50g of aluminium carbonate reacts (molar mass=233.9)with excess hydrochloric acid.

 $Al_2(CO_3)_3(s) + 6 HCl \rightarrow 3 H_2O(l) + 3 CO_2(g) + 2 AlCl_3(aq)$

B. An experiment is designed to determine the effect of sulfur dioxide, one of the EPA criteria pollutants, on plants. Among the variations used is a mixture that has the mole fractions given in the following table.

Gas	N_2	O_2	H_2O	SO_2
Mole fraction	0.751	0.149	0.080	0.020

If the desired total pressure is 750. torr, what should the partial pressures be? If the gas is to be in a 15.0-L vessel held at 30°C, how many moles of each substance are needed?

TABLE 4.2 Solubility Rules for Common Ionic Compounds in Water at 25°C

Soluble Compounds	Insoluble Exceptions
Compounds containing alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺) and the ammonium ion (NH ₄ ⁺)	
Nitrates (NO_3^-) , bicarbonates	
(HCO_3^-) , and chlorates (ClO_3^-)	
Halides (Cl ⁻ , Br ⁻ , I ⁻)	Halides of Ag^+ , Hg_2^{2+} , and Pb^{2+}
Sulfates (SO_4^{2-})	Sulfates of Ag^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}
Insoluble Compounds	Soluble Exceptions
Carbonates $(CO_3^{2^-})$, phosphates $(PO_4^{3^-})$, chromates $(CrO_4^{2^-})$, sulfides (S^{2^-})	Compounds containing alkali metal ions and the ammonium ion
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba^{2+} ion

End of Questions Good Luck