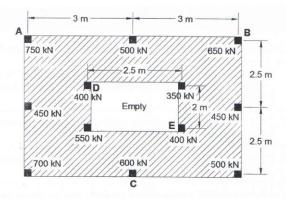
Course Title: Foundation Engineering

Date: 19/01/2014 **No. of Questions:** (5)

Time: 2.5 hr Using Calculator (Yes) University of Palestine

Final Exam First semester 2014/2015 Total Grade: 60


Instructor Na	me: Dr. Sari Abusharai
Student No.:	
Student Name	:
College Name:	Engineering
Dep. / Speciali	st: Civil Engineering

Using Dictionary (No)

Second Question

15/60

The plan of a mat foundation is shown below. Calculate the soil pressure at points A, B, C, D, and E only. (Note: All column sections are planned to be $0.4\ m \times 0.4\ m$).

Course No: CVL 2402 Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5) Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

Final Exam First semester 2014/2015 Total Grade: 60

Instructor Name: Dr. Sari Abusharar Student No.: ______
Student Name: _____
College Name: Engineering
Dep. / Specialist: Civil Engineering Using Dictionary (No)

Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5) Time: 2.5 hr

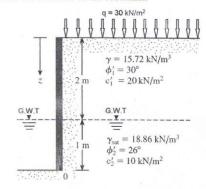
Using Calculator (Yes)

University of Palestine

Final Exam First semester 2014/2015 Total Grade: 60 Instructor Name: Dr. Sari Abusharar

Student No.: __ Student Name:

College Name: Engineering


Dep. / Specialist: Civil Engineering

Using Dictionary (No)

Third Question

5/60

For the 3-m high wall shown below, (a) draw the Rankine pressure distribution diagram, (b) estimate the resultant force per unit length of the wall, and (c) estimate the location of the resultant.

Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5) Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

Final Exam First semester 2014/2015

Total Grade: 60

Instructor Name: Dr. Sari Abusharar

Student No.: ______
Student Name: _____
College Name: Engineering
Dep. / Specialist: Civil Engineering

Using Dictionary (No)

Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5)

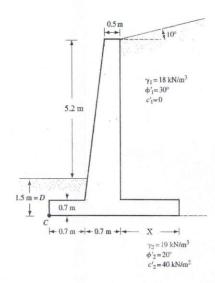
Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

Final Exam First semester 2014/2015 Total Grade: 60 Instructor Name: Dr. Sari Abusharar

Student No.: Student Name:


College Name: Engineering
Dep. / Specialist: Civil Engineering

Using Dictionary (No)

Fourth Question

10/60

For the cantilever retaining wall shown below, determine the value of X in meter that achieves the overturning check only. Use $\gamma_{\text{concrete}} = 23.58 \text{ kN/m}^3$.

Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5)

Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

Final Exam First semester 2014/2015 Total Grade: 60

Instructor Name: Dr. Sari Abusharar

Student No.: ____ Student Name:

College Name: Engineering
Dep. / Specialist: Civil Engineering

Using Dictionary (No)

Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5) Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

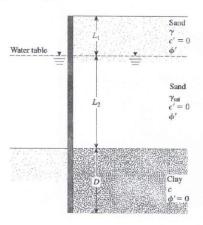
Final Exam
First semester
2014/2015
Total Grade: 60

Instructor Name: Dr. Sari Abusharar

Student No.: ____
Student Name:

College Name: Engineering

Dep. / Specialist: Civil Engineering


Using Dictionary (No)

Fifth Question

10/60

The figure below shows a cantilever sheet pile wall penetrating into saturated clay. Let L_1 = 2.4 m, L_2 = 4.6 m, γ = 15.7 kN/m³, γ_{sat} = 17.3 kN/m³, \emptyset' = 30°, and c = 29 kN/m².

- a. What is the theoretical depth of embedment, D?
- b. What length of sheet piles need if increase D by 50%?
- c. Determine the minimum size of sheet pile section necessary. Use $\sigma_{all} = 172.5 \text{ MN/m}^2$.

Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5) Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

Final Exam First semester 2014/2015 Total Grade: 60 Instructor Name: Dr. Sari Abusharar

Student No.:

Student Name:
College Name: Engineering

Dep. / Specialist: Civil Engineering

Using Dictionary (No)

Course No: CVL 2402 Course Title: Foundation Engineering

Date: 19/01/2014 No. of Questions: (5) Time: 2.5 hr

Using Calculator (Yes)

University of Palestine

Final Exam
First semester
2014/2015
Total Grade: 60

Instructor Name:	Dr.	Sari	Abusharar
Student No.:			

Student Name: College Name: Engineering

Dep. / Specialist: Civil Engineering

Using Dictionary (No)

This is a closed book exam

Answer All Questions

6	n	
U	U	

1. 1	Mark each of the following statements True (T) or False (F)	(5/10
1.	Cantilever footings may be used in place of trapezoidal or rectangular combined footings when the allowable soil bearing capacity is high and the distances between the columns are tight.	
2.	Mat foundations are sometimes preferred for soils that have low load-bearing capacities, but that will have to support high column or wall loads.	
3.	The net allowable pressure applied on a foundation increases by increasing the depth of embedment.	
4.	For a backfilled cantilever type, the sheet piles are driven into the soil after dredging the in situ soil in front and back of the proposed structure.	
5.	When the backfill of the retaining walls is reinforced by reinforcement materials which are generally referred to as mechanically stabilized earth walls.	

B. A mat foundation on a saturated clay soil has dimensions of 20 m x 30 m. Given: dead and live load = 50 MN, and $\gamma_{clay} = 18.5 \text{ kN/m}^3$. Find the depth, D₆, of the mat for a fully compensated foundation. (5/10)